Functional connectivity dynamics in the aging brain

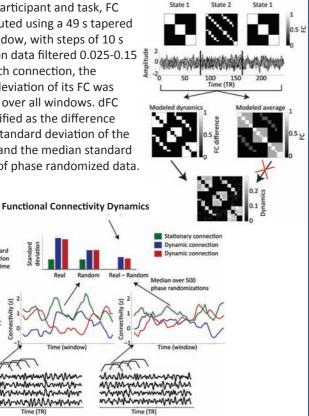
Linda Geerligs¹, Darren Price², John Aston³, Cam-CAN⁴, Richard Henson¹

- ¹ MRC Cognition and Brain Sciences Unit, Cambridge, UK
- ² Department of Psychology, University of Cambridge, Cambridge, UK
- ³ Statistical Laboratory, University of Cambridge, Cambridge, UK
- ⁴Cambridge Centre for Ageing and Neuroscience (Cam-CAN), University of Cambridge and MRC Cognition and Brain Sciences Unit, Cambridge, UK

lindageerligs@gmail.com

Introduction

Aging is associated with a loss of network segregation, due to decreases in functional connectivity (FC) within networks and increases between networks1. However, it is unknown how aging affects the temporal dynamics of FC (dFC). Previous studies have hypothesized that aging might be associated with an inability to flexibly change between distinct connectivity patterns². The questions we address in this work are:

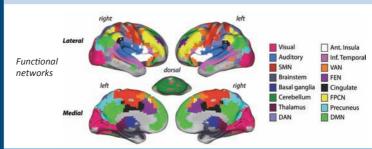

- 1. How is dFC affected by age?
- 2. Are changes in dFC associated with changes in segregation?

Method and Simulations

Participants (N=587, 18-88, mean age=54, SD=18.2) were taken from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN). fMRI data were recorded during three cognitive states: 1) eyes-closed rest, 2) a sensorimotor task and 3) movie watching.

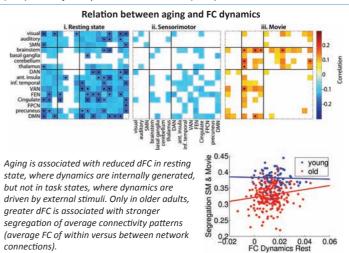
After extensive pre-processing and motion correction, a mean signal was extracted for 748 regions of interest³. Consensus partitioning⁴ was used to achieve a stable network decomposition across all participants and cognitive states.

For each participant and task, FC was computed using a 49 s tapered sliding window, with steps of 10 s (4-5 TRs) on data filtered 0.025-0.15 Hz. For each connection, the standard deviation of its FC was computed over all windows. dFC was quantified as the difference between standard deviation of the real data and the median standard deviation of phase randomized data.


Simulation Results

References

- erligs, L., Renken, R. J., Saliasi, E., Maurits, N. M., & Lorist, M. M. (2014). A brain wide study of age-related changes in functional connectivity
- Gerebrol Cores, doi:10.1039/cercor/bhu012
 Gerebrol Cores, doi:10.1039/cercor/bhu012
 Garrett, D.D., Kovacevic, N., McIntosh, A.R., Grady, C.L. (2011). The importance of being variable. *Journal of Net* Craddock, R. C., James, G. A., Holthelmier, P. E., Hu, X. P., & Mayberg, H. S. (2012). A whole brain fMRI altas gr spectral clustering. *Human Brain Maging*, 33(8), 1914–28.


 Lancichinett, A., & Fortunato, S. (2012). Consensus clustering in complex networks. *Scientific Reports*, 2, 336.

Average FC and FC dynamics across participants

Our dFC measure provides information that is additional to, and independent from, average FC measures. While average FC is high within and weaker between networks, dFC is strong in specific networks, such as the dorsal attention network (DAN) and the fronto-parietal control network (FPCN).

Conclusions

These results show that dynamic FC can be measured independently of average FC and can provide complementary information regarding effects of age and task. We found that aging is associated with a reduction of internally-driven dynamics, but does not affect externally-driven dynamics. Moreover, changes in FC dynamics with age are related to changes in network segregation, suggesting potential common underlying processes.

