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Much is known about how age affects the brain during tightly controlled, though largely contrived,
experiments, but do these effects extrapolate to everyday life? Naturalistic stimuli, such as movies,
closely mimic the real world and provide a window onto the brain’s ability to respond in a timely and
measured fashion to complex, everyday events. Young adults respond to these stimuli in a highly
synchronized fashion, but it remains to be seen how age affects neural responsiveness during naturalistic
viewing. To this end, we scanned a large (N = 218), population-based sample from the Cambridge Centre

f\(]?; E’gldji'sion for Ageing and Neuroscience (Cam-CAN) during movie-watching. Intersubject synchronization declined
Aging with age, such that older adults’ response to the movie was more idiosyncratic. This decreased synchrony

Attentional control related to cognitive measures sensitive to attentional control. Our findings suggest that neural respon-
fMRI sivity changes with age, which likely has important implications for real-world event comprehension

Independent components analysis and memory.
Intersubject correlation

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Movies have the power to transport your mind from the narrow,
impersonal bore of an magnetic resonance imaging (MRI) magnet
to a world more synonymous with everyday life, replete with sights,
sounds, and language. Despite their complexity, these naturalistic
stimuli tend to drive neural activation in the same way across in-
dividuals (Hasson et al., 2004, 2010), suggesting that our experience
of real-world events is largely shared. Although responding in the
same way as others is not a perquisite for perception, it does seem
to reflect the optimal response to a given stimulus, in that asyn-
chronous responding tends to relate to poor comprehension
(Hasson et al., 2009) and memory (Hasson et al., 2008a). This may
be because synchronized activity reflects shared attention to the
most relevant stimulus in the environment, as nominated by the
majority. Empirical work supports this view, as (1) participants’ eye
movements tend to track the same focal item within each shot
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(Dorr et al., 2010; Hasson et al., 2008b), (2) materials that are rated
as more engaging tend to yield the highest degree of neural syn-
chronization (Dmochowski et al., 2014), and (3) disruptions to story
narrative, and ergo meaning, tend to reduce overlap across partic-
ipants (Dmochowski et al., 2012; Hasson et al., 2008b). Although
previous work has mainly focused on aspects of the stimulus itself
that make it more or less captivating, these findings suggest that
individual differences in attentional control should also predict
intersubject synchronization. Individuals with greater attentional
control should be better able to maintain focus on the movie and
should therefore show higher synchronization with others.
Individuals of all ages differ in their ability to control the focus of
attention, but on average, this ability tends to decline with age
(Hasher and Zacks, 1988). For instance, relative to younger adults,
older adults are less able to ignore distracting information (May,
1999), prevent reflexive eye movements toward irrelevant onsets
(Campbell and Ryan, 2009), and to sustain attention to a task to
produce consistent response times (RTs; Hultsch et al., 2002). They
also experience more interference from internally generated
distraction, such as competing responses during memory retrieval
(Healey et al., 2013), and these intrusive thoughts affect their ability
to stay on task, especially as task demands increase (Persson et al.,
2007; Sambataro et al., 2010). This suggests that even during
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task-free, naturalistic viewing, older adults should be less able to
sustain attention to a movie and prevent interference from both
external (e.g., scanner noise; Stevens et al., 2008) and internal
distraction (Mishra et al., 2013). As a result, they should show
altered patterns of neural responsiveness and reduced synchroni-
zation with others during naturalistic viewing.

To test this hypothesis, we obtained functional magnetic reso-
nance imaging (fMRI) data while participants from a large
population-based cohort (aged 18—88 years) watched Alfred
Hitchcock’s “Bang! You're Dead”, a movie previously shown to yield
widespread correlations throughout the cortex (Hasson et al.,
2010). Functional networks were derived using independent com-
ponents analysis (ICA; Beckmann and Smith, 2005; Naci et al.,
2014), a data-reduction technique that decomposes the contin-
uous fMRI time series into a set of components (or neural net-
works), each with an associated spatial map, group-average
timecourse, and set of individual timecourses reflecting the level of
activation within a given network by a given participant at each
time point. A measure of synchronization was then derived for each
participant, based on the correlation between their individual
timecourse and that of the group.

Given age-related declines in attentional control, we expected
older adults’ network timecourses to show less synchronization
with the group-average timecourse. To test the reproducibility of
our main finding of interest (i.e., decreased temporal synchrony
with age), we also ran a supplementary region of interest (ROI)
analysis looking at intersubject correlations in the raw fMRI
timecourses of a large number of small ROIs (Craddock et al., 2012).

Furthermore, we expected intersubject synchronization to be
positively related to measures which are sensitive to attentional
control. Specifically, we expected higher synchronization to be
associated with better performance on a test of fluid intelligence
(widely thought to depend on attentional control; Duncan, 2013;
Engle et al., 1999; Kane and Engle, 2002), but not on measures of
crystallized intelligence (or semantic knowledge). Crystallized in-
telligence is less dependent on attentional control (Cole et al., 2012)
and shows a different life span trajectory (Horn and Cattell, 1967).
We also gave participants a speeded reaction time (RT) task, in which
they had to respond as quickly as possible to visual cues. Here, we
expected higher synchronization to be associated with less variable
RTs, rather than faster responding per se, as previous work suggests
that RT variability is a stronger predictor of attentional control than
mean RT itself (MacDonald et al., 2009; Stuss et al., 2003).

2. Methods
2.1. Participants

A population-derived sample (N = 221, 18—88 years old, M =
56.23, standard deviation [SD] = 17.73) were recruited as part of
the Cambridge Centre for Ageing and Neuroscience project (Shafto
et al., 2014). Exclusion criteria included low performance (24 or
lower) on the Mini-Mental State Exam (Folstein et al., 1975), poor
hearing (failing to hear 35 dB at 1000 Hz in both ears), poor vision
(below 20/50 on the Snellen test), poor English knowledge (non-
native or nonbilingual English speakers), self-reported substance
abuse, and current serious health conditions (e.g., self-reported
major psychiatric conditions, current chemotherapy and/or
radiotherapy, or a history of stroke). We also excluded people who
were not appropriate for MRI or magnetoencephalograph scan-
ning, which included people with safety- and health-
contraindications (e.g., disallowed implants, pacemakers, recent
surgery or any previous brain surgery, current pregnancy, facial or
very recent tattoos, or a history of multiple seizures or fits) as well
as comfort-related issues (e.g., claustrophobia or self-reported

inability to lay supine for an hour). Demographic information
(including age and sex) for this sample is provided in
Supplementary Table 1. Informed consent was obtained from all
participants and ethical approval for the study was obtained from
the Cambridgeshire 2 (now East of England—Cambridge Central)
Research Ethics Committee.

2.2. Cognitive tasks

Participants performed several cognitive tasks outside the
scanner as part of a larger test battery (for a full description, see
Shafto et al., 2014), but here, we focus on measures which are
sensitive to attentional control (fluid intelligence and RT variability)
and control measures which are less dependent on control (crys-
tallized intelligence and mean RT). Our measure of fluid intelligence
was the Cattell Culture Fair (Cattell and Cattell, 1960), a timed pen-
and-paper test in which participants perform a series of nonverbal
puzzles. Crystallized intelligence was measured using the Spot-the-
Word Test (Baddeley et al., 1993), in which participants see word-
nonword pairs (e.g., pinnace-strummage) and decide which is the
real word. Finally, on the speeded choice RT task, participants used
a 4-button response box and responded as quickly as possible
(maximum 3s) to 1 of 4 possible cued fingers (66 trials, variable
inter-trial interval with a mean of 3.7 seconds). Outlier RTs that
were >3 standard deviations (SDs) away from an individual’s mean
were removed (6% of trials on average), and intraindividual means
(choice RTmean) and SDs (choice RTisp) were calculated using the
remaining trials. Data from 34 participants were missing for the
choice RT task because of equipment error (final N = 186).

2.3. The movie

In the scanner, participants watched an edited version of Alfred
Hitchcock’s “Bang! You're Dead”, a black and white television drama
which has previously been used to study neural synchronization
(Hasson et al., 2004). Because of time constraints, the full 25-minute
episode was condensed to 8 minutes with the narrative of the
episode preserved. Participants were instructed to watch, listen, and
pay attention to the movie (they were not aware of its title).

2.4. Image acquisition

Imaging was performed on a 3T Siemens TIM Trio System at the
MRC Cognition Brain and Sciences Unit, Cambridge, UK. A 3D-
structural MRI was acquired for each participant using T1-weighted
sequence (Generalized Autocalibrating Partially Parallel Acquisition;
repetition time = 2250 ms; echo time = 2.99 ms; inversion time =
900 ms; flip angle o = 9°; matrix size 256 mm x 240 mm x 19 mm;
field of view = 256 mm x 240 mm x 192 mm; resolution = 1 mm
isotropic; accelerated factor = 2) with acquisition time of 4 minutes
and 32 seconds. For the functional scan, T,*-weighted echo planar
images (EPIs) were acquired using a multiecho sequence (repetition
time = 2.47 seconds; 5 echoes [echo time = 9.4 ms, 21.2 ms, 33 ms,
45 ms, 57 ms]; flip angle 78°; 32 axial slices of thickness of 3.7 mm
with an interslice gap of 20%; field of view = 192 mm x 192 mm;
voxel-size = 3 mm x 3 mm x 4.44 mm) with an acquisition time of
8 minutes and 13 seconds.

2.5. Imaging analyses

2.5.1. Preprocessing

Functional and structural images were preprocessed using
SPM12 (Wellcome Department of Imaging Neuroscience, University
College London, London, UK), as implemented in AA 4.0 pipeline
(https://github.com/rhodricusack/automaticanalysis).  Fieldmaps
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Fig. 1. The 10 strongest networks activated during the movie: (IC1) auditory, (IC2) visuospatial, (IC3) language and/or dorsal default mode network (DMN), (IC4) visual, (IC5)
posterior salience, (IC6) visual, (IC7) visual and/or ventral DMN, (IC8) language, (IC9) ventral DMN, and (IC10) language and/or ventral DMN networks (labels primarily based on the
most highly correlated template from Shirer et al., 2012). Regions loading positively on a component are shown in warm colors, regions loading negatively on a component are
shown in cool colors (z-values ranging from + 3.0—10.0). Montreal Neurological Institute coordinates (in mm) shown below each slice.

were used to undistort the functional EPI images of each partici-
pant, which were then motion-corrected and slice-time corrected.
The T1 and T2 structural images were coregistered to a Montreal
Neurological Institute (MNI) template image, bias-corrected, and
then combined to segment various tissue classes (Taylor et al., 2013)
using unified segmentation (Ashburner and Friston, 2005). The
segmented gray matter images were then used to create a study-
specific anatomical template using the DARTEL procedure to opti-
mize inter-participant alignment (Ashburner, 2007), which was
then transformed to MNI space. The EPI images were then cor-
egistered to the T1 image and normalized to MNI space using the
DARTEL flowfields.

To reduce the effects of head motion, which tends to increase
with age and may contribute to age differences in functional con-
nectivity (e.g., Power et al., 2012), we applied a wavelet despiking
method that removes motion artifact from fMRI data without de-
leting frames from the fMRI time series (Patel et al., 2014). This
method detects irregular events at different frequencies by

identifying chains of outlying wavelet coefficients and removes
these from voxel time series. The algorithm can remove both pro-
longed motion artifacts (such as spin-history effects) as well as
higher frequency events (such as spikes). The total amount of
despiking performed on a data set is quantified as the average
percentage of voxels containing a spike within a frame of data,
averaged across the whole run. This spike percentage measure was
highly correlated with participants’ total motion during the run (r =
0.79), quantified as the root mean square volume-to-volume
displacement (Jenkinson et al, 2002). Two participants were
excluded from further analyses for having an average spike per-
centage >3 SDs above the mean (1.75%), leaving a total of 219
participants.

After wavelet denoising, the data were smoothed with an 8-mm
full width at half maximum (FWHM) Gaussian kernel. Removal of
nonbrain structures was done using the Brain Extraction Tool
(Smith, 2002) from the Oxford Centre for Functional Magnetic
Resonance Imaging of the Brain’s Software Library (FSL version



3048 K.L. Campbell et al. / Neurobiology of Aging 36 (2015) 3045—3055

4.1.8; Smith et al., 2004). All volumes also underwent mean-based
intensity normalization (using the 4D grand-mean) and were
high-pass filtered (Gaussian-weighted least-squares straight line
fitting, equivalent to 100 seconds) to remove low frequency arti-
facts and resampled to a resolution of 4 mm to reduce the
computational burden.

2.5.2. Independent components analysis

We chose to examine intersubject synchronization at the level of
network timecourses, rather than individual voxels (Hasson et al.,
2004) because age differences in gray matter structure may be
particularly problematic for the fine-grained alignment needed for
voxelwise correlations across participants (Haxby et al., 2014). All
participants’ data were simultaneously entered into a tensor-ICA
(Beckmann and Smith, 2005), a multivariate analysis technique
that identifies patterns of neural activation that are shared across
participants over time. This method decomposes the fMRI signal
into a set of independent components, each with an associated
timecourse (which describes the level of activation in that
component over time), spatial map (which describes the brain re-
gions contributing to the activity timecourse), and set of subject
modes (i.e., “loading values”, which indicate the degree to which
each participant expresses a given spatiotemporal component). An
initial analysis indentified 1 participant (aged 45 years) as an outlier
(with loading values >3 SD from the mean) and this participant was
removed before running the final analysis (N = 218).

The data were decomposed into 56 components using the
Laplace approximation of the model order. We selected the 10 most
strongly expressed components (i.e., those with the highest median
loading values) for further analysis. These components closely
resembled established resting state networks (Allen et al., 2011;
Shirer et al., 2012) and showed relatively low correlation to white
matter and cerebrospinal fluid templates (see Supplementary
Table 2). The components are labeled in Fig. 1A according to the
most highly correlated template from Shirer et al. (2012);
(see Supplementary Table 2 for correlation values). We also calcu-
lated the correlation between pairs of component timecourses and
these are clustered in Fig. 2A using a k-nearest neighbor algorithm.
Finally, to verify that this analysis approach is sensitive to the
content of the movie, we first coded all time points during the
movie that contained talking and convolved these events with a
canonical hemodynamic response function. We then calculated the
correlation between this talking timecourse and each of our
component timecourses (Fig. 2B).

To examine the effect of age on the expression of the compo-
nents, we calculated the partial correlation between age and
loading value separately for each of the 10 components (controlling
for education), with a bootstrap estimate (using 1000 samples) of
the 95% confidence interval for each correlation. Highest education
obtained (see Supplementary Table 1) was included as a covariate in
this and all subsequent analyses to control for potential cohort ef-
fects within our sample.

To quantify intersubject synchronization in the temporal
dimension, we calculated the correlation between each in-
dividual’s network timecourse and the group-average timecourse
for each of our 10 components separately. To quantify deviation
from the mean in the spatial dimension, we first used the dual
regression method (Damoiseaux et al., 2012; Filippini et al., 2009)
to obtain individual spatial maps for each participant for each
component of interest. This method involves (1) using the
unthresholded tensor-ICA spatial maps in a linear model fit
(spatial regression) against the preprocessed fMRI data, resulting
in participant-specific timecourses for each component, and (2)
variance normalizing these participant-specific timecourses and
using them in a linear model fit (temporal regression) against the
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Fig. 2. (A) Correlation between pairs of component timecourses clustered into 2
groups: networks primarily related to auditory and language processing and those
primarily related to vision and attention. (B) Correlation between component time-
courses and talking during the movie. Abbreviations: dDMN, dorsal default mode
network; vDMN, ventral default mode network.

Pearson correlation

preprocessed fMRI data, resulting in participant-specific spatial
maps for each component. Then, for each of the 10 components of
interest, we correlated each participant-specific map with the
original component map to obtain a single measure per partici-
pant indicating the degree to which she or he deviates from the
group average in the spatial dimension. Correspondence in the
temporal and spatial dimensions was then correlated with age,
with a statistical threshold of p < 0.05 (Bonferroni corrected for
the number of tests).

2.5.3. ROI analysis

For the ROI analysis, we parcellated the whole brain into 840
ROIs (average size = 21.8 voxels, SD = 5.8) created by Craddock
et al. (2012). We chose this level of parcellation because it
should be fine-grained enough to capture regional differences in
temporal synchrony but also coarse enough to avoid potential age-
bias in the coregistration of functional images (which may be
particularly problematic for voxelwise correlations). For each in-
dividual, we extracted the mean timecourse for each ROI and
correlated this to the mean timecourse of all other participants.
These ROI correlation (or synchrony) values were then converted
to z-scores, using the Fisher r-z transformation, to obtain a more
normal distribution. Subsequently, we correlated the synchrony
values in each ROI with age (controlling for education). We also
tested whether older adults are more similar to their age-matched
peers than they are to the group as a whole. For this analysis, we
first selected 2 equally sized groups: older adults (>65 years,
n = 81) and younger adults (<50 years, n = 82). We then calcu-
lated the correlation between each individual’s ROI timecourse
and the mean timecourse of their group, and then performed a
2-sample t test for each ROI testing the difference in average
synchrony between the 2 age groups (again, including education
as a covariate). Results shown are thresholded at both p < 0.001
and p < 0.05/840 (i.e., Bonferroni corrected).

2.6. Intersubject synchronization and measures of attentional
control

To examine how intersubject synchronization relates to individ-
ual differences in attentional control, we first calculated a single
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synchronization score for each participant as their mean correlation
to the group-average timecourse across our 10 components of in-
terest (although a similar pattern of results are seen if we use mean
synchronizations across ROIs). For each of our cognitive measures of
interest (fluid intelligence, crystallized intelligence, choice RTmean,
and choice RTisp), we ran a separate regression model, predicting
performance from age, synchronization score, and the age x syn-
chronization score interaction (which tests for a change in the
relationship between brain and behavior with age). Education was
also included as a covariate of no interest. Because RT means and SDs
tend to be highly correlated to each other and similarly correlated
with age (Hale et al., 1988), we included each of these measures as a
covariate in the model predicting the other, which ensured that
whatever relationship we observed between synchronization and RT
means or SDs would be unique to that measure. Effects were
considered significant at a statistical threshold of p < 0.05.

3. Results
3.1. ICA results

The ICA analysis estimated 56 components, each with an
associated spatial map, timecourse of activation, and set of
participant loading values, which indicate the degree to which
each participant expresses a given spatiotemporal pattern. The
spatial maps for the 10 most strongly expressed of these compo-
nents are shown in Fig. 1 and are labeled according to the most
highly correlated template(s) from Shirer et al, 2012;
(Supplementary Table 2). These components closely resemble
previously established resting state networks (Allen et al., 2011;
Shirer et al., 2012), correlating most highly with the (1) auditory,
(2) visuospatial, (3) language and/or dorsal default mode network
(DMN), (4) visual, (5) posterior salience, (6) visual, (7) visual and/
or ventral DMN, (8) language, (9) ventral DMN, and (10) language
and/or ventral DMN networks. Examining the correlations be-
tween pairs of network timecourses, we see that these networks
clustered into 2 groups (see Fig. 2A). Auditory and language
components were highly correlated during the movie and anti-
correlated with visual and attentional networks, whereas the
latter networks were highly intercorrelated. Moreover, the audi-
tory and language networks covaried with talking during the
movie (Fig. 2B), suggesting that the ICA approach successfully
identified neurocognitive networks which correspond to mean-
ingful events within the movie.

Participant loading values, or network expression, significantly
declined with age across all 10 components of interest (Fig. 3).
Moreover, and in line with our predictions, intersubject synchro-
nization, or correlation to the group-average timecourse, declined
with age across all components, controlling for education (see
Fig. 4, Supplementary Table 3). Figure 5 illustrates this for 1
representative component (the auditory network) by plotting the
individual timecourses of the 30 youngest and 30 oldest partici-
pants, along with the group-average timecourse and the time-
course of talking during the movie. Although younger adults clearly
responded in a synchronized way to the movie, older adults were
much more variable in their response. This age difference remains
even if we partial out the effects of motion (Supplementary Fig. 1),
suggesting that it cannot be explained alone by age differences in
head motion during the scan (Power et al., 2012; Satterthwaite
et al., 2012; Van Dijk et al., 2012).

We also calculated an equivalent metric of deviation from the
mean in the spatial dimension, by first using dual regression
(Damoiseaux et al., 2012; Filippini et al., 2009) to obtain
participant-specific spatial maps and then calculating the corre-
lation between these maps and the original component map, for
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Fig. 3. Partial correlation between age and individual loading values (controlling for
education) for the 10 components shown in Fig. 1. Error bars represent 95% bootstrap
confidence intervals. Abbreviations: dDMN, dorsal default mode network; Lang, lan-
guage; Post, posterior, vVDMN, ventral default mode network.

each component of interest separately. As with the temporal
dimension, correlation to the group-average spatial map declined
with age across all components (see Supplementary Table 3),
although the absolute decline in spatial correlation across the life
span was quite small (averaged across the 10 networks, correla-
tions declined from 0.78 in decile 1 to 0.74 in decile 7; see
Supplementary Fig. 2).

3.2. ROI analysis results

To ensure that the observed age-related decrease in intersubject
synchronization was not due to a difference in the network struc-
ture of older adults, or specific to the method we applied, we ran a
supplementary ROI analysis. To this end, we extracted the mean
timecourse from 840 ROIs (Craddock et al., 2012) and then for each
ROI separately, calculated the correlation between an individual’s
timecourse and the mean timecourse of all other participants.
Similar to previous work using a voxelwise approach (Hasson et al.,
2004), this method yielded robust intersubject correlations
throughout the cortex (Fig. 6A), with the strongest synchronization
in primary visual and auditory regions and weaker synchronization
in sensorimotor and rostral frontal cortex. Importantly, we replicate
the main finding of interest from our ICA analysis, showing that
intersubject correlations declined with age (after controlling for
education) in several regions (Fig. 6B), including middle occipital
cortex, intraparietal sulcus, the temporal poles, anterior cingulate,
and left superior frontal lobe. There were no regions in which
synchrony increased with age. Furthermore, if we split the sample
into 2 groups (younger and older), correlate individuals to their age-
matched peers, and then compare the strength of these correlations
between groups (including education as a covariate), a very similar
pattern of results emerge (Fig. 6C), suggesting that older adults are
just as dissimilar to each other as they are to younger adults. Taken
together, these findings suggest that intersubject synchronization
during naturalistic viewing declines with age.

3.3. Intersubject synchronization and measures of attentional
control

Means and SDs for the cognitive measures are shown per decile
in Supplementary Table 1. As expected from previous findings, ag-
ing was associated with lower performance on tests sensitive to
attentional control, with older adults scoring lower on the Cattell
test of fluid intelligence (r = —0.65, p < 0.001) and more variably
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interest shown in Fig. 1. Corresponding correlation values shown in Supplementary Table 3.

(r=0.58, p < 0.001), as well as slower (r = 0.65, p < 0.001), on the
Choice RT task, all controlling for education. In contrast, crystallized
intelligence increased with age, controlling for education (r = 0.22,
p < 0.01).

To test whether individuals with greater attentional control
show higher synchronization with the group during the movie, we
first calculated a single synchronization score for each participant

as their mean correlation to the group-average timecourse across
the 10 components from our ICA analysis. We then performed
separate regression analyses for each of the cognitive measures of
interest (i.e., fluid intelligence and choice RTisp as proxies for
attentional control; crystallized intelligence, and choice RTyean as
control measures, not expected to relate to synchronization). Our
predictor variables were age, synchronization score, and the
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Fig. 5. Individual timecourses from the auditory network for the 30 youngest and 30 oldest participants (each line represents a single participant), with the group-average

timecourse and the timecourse of talking during the movie plotted in between.

age x synchronization interaction, with education as a covariate.
Results from these regressions are shown in Table 1 and scatter
plots depicting the relationship between synchronization and each
cognitive variable (subdivided into decile subgroups for visualiza-
tion purposes) are shown in Fig. 7. Higher intersubject synchroni-
zation related to lower choice RTisp across the entire sample
(indicated by the significant main effect of synchronization in
Table 1) and to higher fluid intelligence among middle-to older-
aged adults (indicated by the significant interaction between age
and synchronization in Table 1). In contrast, synchronization was
not related to crystallized intelligence and, if anything, related
positively to choice RTpean due to slightly slower responding by
young adults who showed greater synchrony with the group
(Fig. 7). These findings suggest that individual differences in
attentional control relate to intersubject synchronization during
natural viewing, particularly among older adults.

4. Discussion

Using both an ICA and ROI-based approach, we showed that
intersubject synchronization declines with age during naturalistic
viewing, such that older adults respond to a common, driving
stimulus in a more variable fashion than younger adults. From
the ROI analysis, we see that this decreased synchrony was
particularly pronounced in regions responsible for attentional
control (i.e., superior frontal lobe and intraparietal sulcus) and

language processing (i.e., bilateral middle temporal gyrus and left
inferior frontal gyrus). We went on to show that intersubject syn-
chronization was also selectively related to measures which are
sensitive to attentional control, such as fluid intelligence and RT
variability (Duncan, 2013; Engle et al., 1999; Hasher et al., 2007;
Hultsch et al., 2002) but not measures which are less reliant on
top-down control, such as crystallized intelligence (Cole et al.,
2012). These findings suggest that neural responsivity, or the abil-
ity to respond in a timely and appropriate fashion to ongoing events
in the environment, differs with age, possibly due to altered pat-
terns of attention during the perception of complex, naturalistic
scenes.

To respond to a driving stimulus in the same way as everyone
else, as a starting point, one needs to attend to the same things as
everyone else. Hollywood, or in this case Hitchcock, makes this easy
for us by constructing stimuli which draw attention (as measured
by eye movements) to the focal item in each shot (Dorr et al., 2010;
Hasson et al., 2008b). When the stimulus is less engaging, such as
footage of everyday activities (Hasson et al., 2010) or less popular
Super Bowl commercials (Dmochowski et al., 2014), people show
less overlap in their neural activation, suggesting that a stimulus
needs to be sufficiently captivating to drive attention in this
bottom-up manner. However, bottom-up attention is not sufficient;
top-down control is also needed, at the very least, to maintain
fixation on the movie and limit attention to that information which
is most relevant to the plot.
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Fig. 6. Intersubject synchrony results from the region of interest analysis. Significant intersubject correlations were seen throughout the cortex [(A); Bonferroni corrected for
multiple comparisons]. Synchronization was negatively correlated with age (controlling for education) in several regions [(B); blue thresholded at p < 0.001; violet regions survive
Bonferroni correction, p < 0.05/840]. A similar pattern of results is seen panel C if younger (<50 years) and older adults (>65 years) are instead correlated to their age-matched peers
and a group contrast is performed with education as a covariate (young > old, blue p < 0.001, violet p < 0.05/840), suggesting that older adults are just as dissimilar from each other
as they are to younger adults. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Table 1
Regressions predicting attentional control as a function of age, education, synchronization score, and the age by synchronization score interaction

Outcome variable Predictor variables Model R? B [95% CI] SE B t p

Fluid intelligence 0.56
Age? -0.23 [-0.27, -0.19] 0.02 -10.63 <0.0001
Synchronization 1.86 [-6.20, 9.91] 4.09 0.45 0.65
Age x synchronization® 0.55[0.03, 1.08] 0.27 2.09 <0.05
Education® 1.79 [1.14, 2.44] 0.33 543 <0.0001

Crystallized intelligence 0.19
Age?® 0.08 [0.04, 0.13] 0.02 3.64 <0.001
Synchronization 5.59 [-2.44, 13.63] 4.08 137 0.17
Age x synchronization 0.002 [-0.51, 0.52] 0.26 0.006 0.99
Education® 2.30[1.52, 3.09] 0.40 5.76 <0.0001

Choice RTisp 0.66
Age 0.0002 [-0.0002, 0.0006] 0.0002 0.85 0.40
Synchronization® —0.07 [-0.12, —0.02] 0.03 —2.64 <0.01
Age x synchronization —0.001 [-0.005, 0.002] 0.002 -0.75 0.46
Choice RTean” 0.28 [0.19, 0.37] 0.05 6.05 <0.0001
Education 0.0002 [-0.005, 0.005] 0.003 0.08 0.93

Choice RTean 0.70
Age” 0.003 [0.002, 0.004] 0.0005 4.84 <0.0001
Synchronization® 0.16 [0.04, 0.28] 0.06 2.70 <0.01
Age x synchronization —0.005 [-0.02, 0.006] 0.006 -0.88 0.38
Choice RTjsp* 1.60 [1.25, 1.92] 0.17 9.34 <0.0001
Education —0.004 [-0.02, 0.009] 0.007 -0.67 0.51

Statistical models were computed separately for each cognitive measure. Results represent regression parameters for a given cognitive task predicted by age, education,
synchronization score, and the age x synchronization score interaction. To control for the high degree of correlation between RTean and RTjsp, the model predicting choice
RTisp included choice RTyean as a covariate and the model predicting choice RTyean included choice RTjsp as a covariate. Beta values reflect unstandardized regression co-
efficients.
Key: CI, confidence interval; ISD, intraindividual standard deviation; RT, reaction time; SE, standard error.

2 Significant predictors.



K.L. Campbell et al. / Neurobiology of Aging 36 (2015) 3045—3055

45 -+
40 -
35 A

25 A

Fluid intelligence

15 A

10 T T !
0.3 0.5 0.7 0.9

Synchronization score

0.4 -+

0.3 A

0.1 4

SD of Choice RT (sec)

0.3 0.5 0.7 0.9

Synchronization score

3053

65 1

55 A

45 4

35 A

Crystallized intelligence

25 T T ]
0.3 0.5 0.7 0.9

Synchronization score

® Deciles 1-3
@ Deciles 4-5
a 2 4 Deciles 6-7

1.2 -

0.8 4

Mean Choice RT (sec)

0 T T ]
0.3 0.5 0.7 0.9

Synchronization score

Fig. 7. Scatterplots showing the relationship between intersubject synchronization and measures sensitive to attentional control (i.e., fluid intelligence and RT variability), as well as
control measures less dependent on attentional control (i.e., crystallized intelligence and mean RT). To show how this relationship changed with age in some cases, data are split
into 3 roughly equal subgroups: deciles 1-3 (red, N = 72), deciles 45 (blue, N = 81), and deciles 6—7 (green, N = 65). Abbreviations: RT, reaction time; SD, standard deviation. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

In line with this view, we found that individual differences in
attentional control predict intersubject synchronization and on
average, temporal synchrony declines with age. We argue that this
age-related decline likely reflects a difference in top-down control
(Hasher and Zacks, 1988), rather than bottom-up capture, as
attentional capture is known to be relatively preserved with age
(Folk and Hoyer, 1992; Hartley et al., 1990; Pratt and Bellomo, 1999).
Moreover, materials with emotional content tend to be particularly
salient to, and better remembered by, older adults (Carstensen and
Turk-Charles, 1994; Rahhal et al., 2002) and thus, their attention
should have been sufficiently captured by the movie, which
contained a lot of emotional content being directed by “The Master
of Suspense” himself. In future, measures of attentional focus (Naci
et al., 2014) and eye tracking (e.g., Dorr et al.,, 2010) should be
collected at the same time as scanning to better characterize age
differences in attentional focus to the movie itself, as this is a caveat
of the current design.

Although responding to a movie in an idiosyncratic or variable
fashion may, in itself, seem innocuous, our behavioral results
suggest that this type of erratic responding is, instead, indicative
of attentional dysfunction. What are the consequences of this
erratic responding for narrative comprehension and memory?
Related behavioral work suggests that older adults’ idiosyncratic
responding may have consequences for the encoding of temporal
order information (Sargent et al., 2013). In these studies, partici-
pants typically watch a movie and indicate whenever they think
an event boundary has occurred. Older adults tend to vary more in
where they draw those boundaries, with those who respond in the

most variable or idiosyncratic way being least able to recall the
order of events (Bailey et al., 2013; Zacks et al., 2006). Thus, there
is something to be said for normative responding, as shared
attention appears to track whatever information is most infor-
mative in a given scene. Those who stray from the pack ultimately
arrive at a different perspective—one that is lacking in key details
but may be potentially rich in other, unforeseen ways (Kemper
et al., 1990).

Beyond attentional control, these results also contribute to the
growing literature on age differences in functional connectivity by
showing that aging affects network responsiveness during natural
viewing. Watching the movie activated a set of networks similar to
canonical resting state networks, in line with previous work
showing little change in the spatial extent of large-scale networks
moving from rest to task (Betti et al., 2013; Greicius et al., 2003;
Smith et al., 2009) and replicated previous demonstrations of an
age-related decline in network expression. In fact, the age-related
decline observed here was particularly pronounced, in that it
spanned across all networks rather than being limited to a few, as
has been reported previously in ICA analyses of resting state data
(Damoiseaux et al.,, 2008; Mowinckel et al., 2012). This may be
because our use of a common driving stimulus allowed for the
quantification of deviation from the mean in both the temporal and
spatial dimension (only the latter is possible during rest). However,
it should be noted that the observed age differences may be due, at
least in part, to cohort differences within our cross-sectional sam-
ple. We included education as a covariate in all analyses to help
ameliorate these effects, but determining the true effect of age on
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network responsivity requires further longitudinal testing (e.g., Raz
and Lindenberger, 2011), which we hope to do in future.

In conclusion, the present results show that age affects network
responsivity and synchronization during naturalistic viewing
which, owing to its complex and multimodal nature, is arguably
more reflective of everyday life than standard experimental tasks.
These findings suggest that as we age, our experience of the world
becomes increasingly individualistic, differing not only from those
who differ from us in age, but also from our age-matched peers.
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